zu (i) hast du doch einen Tipp: Also los:
$$ {{ x }_{ n+1}}^p $$ wegen der Rekursion
$$= {({ x }_{n }-\frac {{ { x }_{ n}^p}-a} { p*{ x }^{p-1} })}^p $$
$$= {({ x }_{n }*(1-\frac {{ { x }_{ n}^p}-a} { p{ x }^{p} }))}^p $$
$$= {({ x }_{n }*(1+\frac { -1 }{ p }*\frac {{ { x }_{ n}^p}-a} { { x }^{p} }))}^p $$
$$= {{ x }_{n }^p*(1+\frac { -1 }{ p }*\frac {{ { x }_{ n}^p}-a} { { x }^{p} })}^p $$
Dann Bernoulli
$$ ≥ {{ x }_{n }^p*(1+p*\frac { -1 }{ p }*\frac {{ { x }_{ n}^p}-a} { { x }^{p} })} $$
$$ = {{ x }_{n }^p*(1-\frac {{ { x }_{ n}^p}-a} { { x }^{p} })} $$
$$ = {{ x }_{n }^p-({ { x }_{ n}^p}-a)} $$
$$ = a $$
Falls die Folge einen Grenzwert g hat, gehen ja xn und xn+1 gegen g
also wegen der Rekursion
g = (g - (g^p - a) / ( p * g p-1 )
0 = g^p - a
also g = p-te Wurzel aus a.