Quantcast
Channel: Mathelounge - Neue Fragen und Antworten
Viewing all articles
Browse latest Browse all 216874

Beantwortet: Lösen von Exponentialgleichung. 4^x+ 3*2^x=10. 2^x=u erlaubt?

$
0
0

Hallo,

4x+ 3*2x=10 

(2^2)^x +3 *2^x=10

(2^x)^2 +3 *2^x=10

Substitution= z= 2^x

------->

z^2 +3*z -10=0

z_1.2=  3/2 ± √(9/4 +40/4)

z_1.2= -3/2 ± 7/2

z_1= 2

z_2= -5

Resubstitution:

2^1 =2^x

Exponentenvergleich

x=1

(-5)= 2^x -<hat keine Lösung


Viewing all articles
Browse latest Browse all 216874

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>