Falls \(a\ne0, b\ne0\) und \(a+b\ne0\) sind, ist$$\quad(1)\quad a^2x-b^2y=a^2+b^2$$$$\quad(2)\quad a^2x+aby=2a^2.$$Subtraktion liefert$$\quad\ aby+b^2y=a^2-b^2$$$$\Leftrightarrow by(a+b)=(a-b)(a+b)$$$$y=\frac ab-1.$$$$x=\frac ba+1.$$
↧